

Waste Gasification and Melting Technology - Direct Melting System -

Nobuhiro Tanigaki 22th November, AVG, Cologne

Leading with Determination
NIPPON STEEL & SUMIKIN ENGINEERING

Contents

1. Introduction

- Company Introduction
- History of Japanese Waste Gasification Technology

2. Methodology

- Process Flow
- Gasifier

3. Key Advantages for Deploying

- Waste Flexibility
- Environmental Friendly
- Sustainability
- Reliability

4. Summary

Contents

1. Introduction

- Company Introduction
- History of Japanese Waste Gasification Technology
- 2. Methodology
 - Process Flow
 - Gasifier
- **3. Key Advantages for Deploying**
 - Waste Flexibility
 - Environmental Friendly
 - Sustainability
 - Reliability

4. Summary

Ownership structure

Group structure NSSMC and NSENGI

Roots of the company

'70 - '80Development of Gasification Technologies -

Energy recovery from Waste via Gasification has been a great interest

National Project or development as a Japanese original technology
 Modification of foreign technologies

'80 - '90

- Development of Gasification Technologies -

- Ash was specified as a specially-controlled municipal waste Optimum treatments for ash were required.
 Melting is one of the optimum methods for ash treatment.
 - it is not allowed to recycle bottom ash as a road construction material directly
 - Aging requires a long term to stabilize toxic components Due to its small land in Japan, it is difficult to find the space for aging.
- ✓ Reduction and detoxification of bottom ash and fly ash are required in Japan.

- 1) Ash Smelting systems using electricity or fuel were developed
- 2) A lot of ash smelting technologies are employed (Arc type, Plasma type, Fuel type etc.)

- ✓ Dioxins problems
 Establishment of Dioxins guidelines (1.0 => 0.1 ng-TEQ/m³_N)
- ✓ Recycling of waste (Especially metal and slag (not bottom ash)
- ✓ Triggers

'90

- Mitsui's Gasification technology introduction (Recycle 21) from Siemens
- Replacement of Nippon Steel DMS in Ibaraki-City (1993)

- 1) Shaft-furnace type :
- 2) Kiln type :
- 3) Fluidized bed type :

2 companies (Nippon Steel DMS)2 companies +2 groups8 companies + 1 group

12 companies + 3 groups

Total

Requirement for Gasification

- 1) Low emissions (especially **Dioxins and other components**)
- Material and energy recovery from waste Energy recovery is not a first priority Due to its severe regulation on bottom ash, it is not allowed to recycle as a road construction material directly.
- Reduction and minimisation of final landfill amount Treating various kinds of waste together Due to its small land, reduction of final landfill is a first priority
- 4) Cost reduction (including final landfill gate fee)

Contents

1. Introduction

- Company Introduction
- History of Japanese Waste Gasification Technology

2. Methodology

- Process Flow
- Gasifier

3. Key Advantages for Deploying

- Waste Flexibility
- Environmental Friendly
- Sustainability
- Reliability

4. Summary

Process Flow

12

Gasifier Advantages

>Waste Flexibility

No Pretreatment (Max. 800 mm) Co-gasification

Sewage sludge

Bottom ash Landfill Waste

Clinical Waste

High LHV of Syngas Continuous syngas measuring Stable combustion

Approx. 5.9 MJ/ m_N^3 based on 9.1 MJ/kg-waste

refer to N.Tanigaki et. al. Waste Management

> High Temperature & Reducing Atmosphere

Produced by coke burning heat Toxic heavy metals are volatilized and distributed to fly ash.

Few toxic heavy metals remain in slag and metal.

> Low Environmental Impact

Low HCl and SO₂ concentration

Contents

1. Introduction

- Company Introduction
- History of Japanese Waste Gasification Technology

2. Methodology

- Process Flow
- Gasifier

3. Key Advantages for Deploying

- Waste Flexibility
- Environmental Friendly
- Sustainability
- Reliability

4. Summary

Key Advantages for Deploying

(1) Flexibility

- Waste flexibility

(2) Environmental Friendly

- Lower Emissions
- Contribution to "Circular Society"

(3) Sustainability

- High Power Generation
- Material and Energy Recovery from Waste

(4) Reliability

- Technology is well-proven
- Company
- Technology supplier or Turn-key supply?

Waste Flexibility

(1)Waste Flexibility

This system has high waste flexibility and requires no pre-treatment.

- ✓ High temperature gasification (>1,800 C)
- ✓ Double damper system (max. 800 mm)
- ✓ No pre-treatment

Mainly MSW or RDF In addition, we process other waste with higher gate fee (co-gasification). The **"Co-gasification"** can improve the feasibility of the plant.

e Bottom ash

sh

Landfill Waste

www.steinmueller-babcock.com

Environmental Friendly

(1)Low Emissions

- ✓ Syngas combustion (homogeneous combustion) for low NOx and PCDD/DFs emissions
- ✓ 3Ts (Time, Temperature, turbulence)
- ✓ Lower emissions such as PCDD/DFs, HCl and SO₂ have positive impact for achieving permissions.

(2) Energy and Material Recovery from Waste

- Recycling material from waste without further post- treatment
- Minimizing non-recyclables and landfill amount
- Contributing to "Circular Economy"

Environmental Friendly - HCl and PCDD/DFs Emissions -

- ✓ PCDD/DFs were not removed at BF due to no activated carbon injection.
- \checkmark PCDD/DFs concentration at stacks are significantly low.

1.5 1.4 1.2 1.0

- due to Desulfurization by limestone injection to the gasifier, HCl and SO_2 concentration from gasifier is very low.

PCDD/DFs

Sustainability

- Power Generation -

- Horizontal Boiler
- η:>**28%** (11 MJ/kg, 10t/h x 2 lines)
- Dust Removal: Rapping system Shower Cleaning Soot Blower for Economizer Lower maintenance problems
- Well-organized boiler structure via SBE_{NG}'s know-how.
- Combustion chamber is also the part of the boiler

Sustainability - Material Recovery from Waste -

Materials of Iron industries

Counterweight for construction machine

		Slag (DMS)	Natural Sand (example)	Japanese Standard limited value
Pb (lead)	mg/kg	5~20	1~15	<150
Arsenic	mg/kg	<0.5	~2	<150
Cd	mg/kg	<0.1	<0.1	<150
T-Hg	mg/kg	<0.05	<0.05	<15
Chromium	mg/kg	<1	<1	<250
Selenium	mg/kg	<0.2	<0.2	<150
Fluorine	mg/kg	50~200	<400	<4,000
Boron	mg/kg	100~250	<400	<4,000

Acid leaching test (JIS K0058-2)

Sustainability - Slag (Eco-sand) Recycling -

Produced Slag is 100% recycled and is sold as "Eco-Sand", not only for secondary materials but also marine block or soil.

Concrete block

Slag (Eco-Sand)

Interlocking block

www.steinmueller-babcock.com

Asphalt paving

Sustainability - Heavy Metal Distribution (Recycling) -

Reliability - Commercial References -

Reliability - Measures for Scaling-up of Gasifier -

Scale-up of gasification technology is one of the technical issues.

- Gasification reaction in the gasifier.
- optimization of waste charging and combustion conditions.

Our gasification (Direct Melting System) gradually expands its capacity, during 37 years and leach the capacity of 14 t/h per line.

Shin-Moji Plant, Japan

Location / Purchaser Kitakyushu City, Japan

Fuel Municipal solid waste Incombustibles

Capacity 3 x 10 t/h 9 100 - 12 000 kJ/kg Largest gasification Plant in operation

Year of Start Up 2007

NSENGI Scope of Supply Full Turn key

Operation & Maintenance

Saitama Plant, Japan

Location / Purchaser Saitama City, Japan

Fuel

Municipal solid waste Bottom ash Incombustibles Sewage Sludge

Capacity 2 x 7.9 t/h

Year of Start Up 2015

NSENGI Scope of Supply Full Turn key DBO Operation & Maintenance

Narumi Plant, Japan

- Co-gasification -

Location / Purchaser

Nagoya City, Japan

Fuel

Municipal solid waste Bottom ash Incombustibles Combustibles

Capacity

2 x 11 t/h 6 500 kJ/kg

Year of Start Up 2009

NSENGI Scope of Supply

Full Turn key BTO Operation & Maintenance

- \checkmark Bottom ash direct recycling is not allowed
- ✓ The municipality has no landfill site
- \Rightarrow Need solutions. Co-Gasification and recycling
- \Rightarrow 87% reduction of final landfill amount

Kita-Nagoya Plant, Japan

Location / Purchaser Kita-Nagoya City, Japan

Fuel Municipal solid waste

Capacity 2 x 14 t/h Largest Waste gasification

Year of Start Up

(awarded at 11th Dec. 2015)

NSENGI Scope of Supply Full Turn key BTO Operation & Maintenance

Yangsan, South Korea

Location / Purchaser Yangsan City, South Korea

Fuel Municipal solid waste

Capacity

2 x 4.2 t/h 12 000 kJ/kg 20% moisture

Year of Start Up 2007

NSENGI Scope of Supply Basic Engineering Gasifier, Slag discharger Combustion chamber Operation training

Reliability - Operation Support -

(1) PlantPAD

- \checkmark Monitored operating condition remotely
- \checkmark Inspection data is recorded
- \checkmark Checking operating data

- ITV

- Historical trend data
- On-time operating condition
- $\checkmark\,$ easier maintenance management

(2) Predictive Operating

- \checkmark Many operating records can predict the operating conditions.
- \checkmark Several parameters are picked up for predictive operation.

These supporting system lead easier "O&M" of gasification technology

www.steinmueller-babcock.com

Summary

- ✓ SBENG as NSENGI Group has a capability to provide various solutions for clients. (gasification, incineration and others)
- ✓ SBE_{NG} can provide EPC Turn-key Solution to the clients for Incineration and Gasification with reliable references.
- ✓ The Direct Melting System (DMS) can achieve both the energy and material recovery from waste without any pre- and post treatment.
- ✓ Driving factors of waste gasification for deployment are
 - (1) Flexibility of waste
 - (2) Environmental Friendly
 - (3) Sustainability (Energy and Material recovery)
 - (4) Reliability (Commercial Reference, O&M, EPC capability)
- ✓ Especially, our waste flexibility have great possibility to contribute to "Circular Economy" and to improve feasibility of the project.

WE MAKE THE WORLD A CLEANER PLACE

Let's work it out together.

Leading with Determination
NIPPON STEEL & SUMIKIN ENGINEERING

