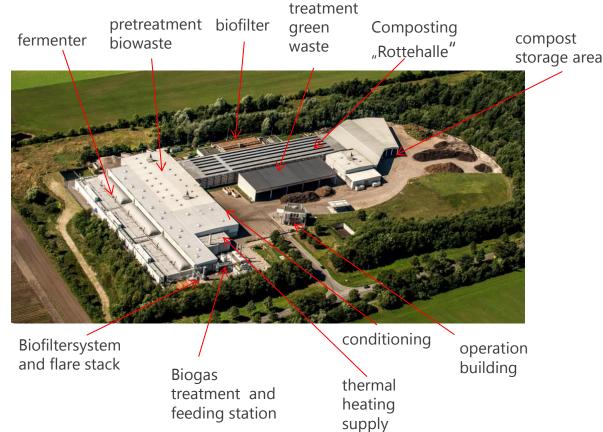
Biogas- and Composting Plant Bützberg



The potential of organic waste for biogas production and composting

Dr. Anke Boisch Leader Operation and Technics

Stadtreinigung Hamburg

ONNECTIVE

1. Closed Cycle Management Act

 determines all aspects of waste management: responsibilities for collection, climate and resource protection, treatment of waste, waste transport, design of landfills etc.

Some regulations of Closed Cycle Management Act:

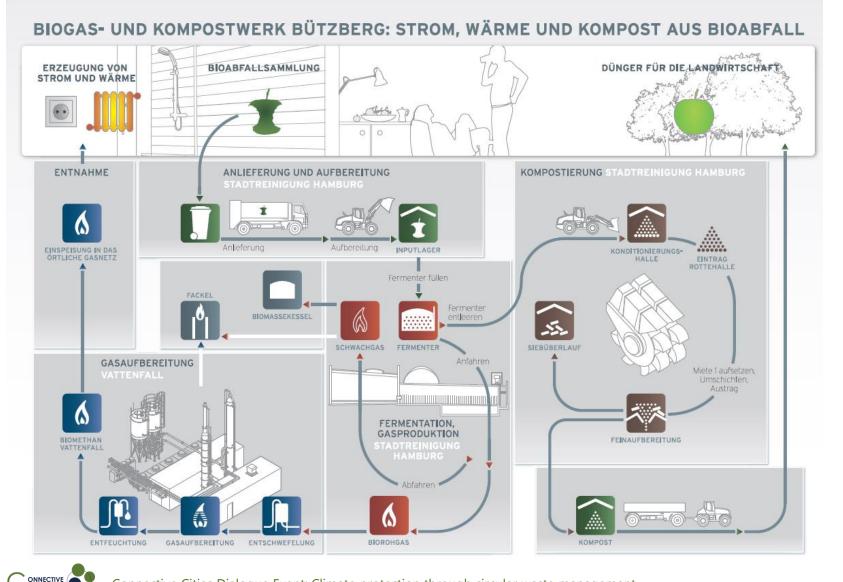
- <u>Responsibilities for waste disposal (household waste!)</u>
- Climate and resource protection
 - 5-step waste hierarchy (1. Prevention of waste, 2. Preparing for re-use, 3. Recycling, 4. Other recovery, e.g. <u>energy recovery</u>, 5. Disposal)
 - By 2015: Area-wide separate collection of biowaste, metals, plastics, paper and glass
 - By 2020: Quotas for substantial and energetic usage (e.g. 65 % recycling of municipal solid waste)

2. Challenge: Utilisation of Stadtreinigung Hamburg organic household waste

Goal of the treatment:

- Production of renewable energy (energy of 1 Mg Biowaste = 450 kWh)
- Recovery of substantial resources and raising of the enviromental relief (mainly humus und phosphorous)
- Treatment and recovery of the whole life time cycle of the waste
- Optimizing and utilisation in treatment and recovery

Connective Cities Dialogue Event: Climate protection through circular waste management


3. Approach

- Collecting green waste from gardens through the waste management systems in Hamburg
- Collecting seperate wood mainly treated wood for energy recovery
- Seperate collecting of leaves for special treatment and recovery in pellets as agriculture fertilizer
- Commercial organic waste for treatment in wet-fermentation at the **BioWerk Plant**
- Seperate collected biowaste in the bio-bin and treatment at the Biogas- und Kompostwerk Bützberg

4. Processing scheme

Connective Cities Dialogue Event: Climate protection through circular waste management

5. Outputs

Amount of

Input bio-and greenwaste: 70,000 t/a

Output contraries: max ca. 3,500 t/a

Energy

Biogasproduction approx. 350 – 700 m³ Biogas/h

Biomethan after treatment: 2.5 to 2.8 Mio m³/a

> feeding to the main gas distribution system

Energy content biomethan approx.10 kWh/m³ = 25 Mio kWh/a

Substantial recovery

compost ca. 35,000 t/a > marketing: private gardener, agriculture Structure material approx. 5,000 t/a - Energy production in biomass heating plants

6. Lessons

Increasing requirements

- Recycling of nutrients, particulary Phophorus
- Humusfertilization to protect the function of the soil
- Renewable energy

Becoming more impotant

- Substantial and
- Energetic recycling of biowaste
- Consiering climate influences in treatment and recycling
- Life time cycle of waste and hierachy of waste treatment